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Abstract

An analysis of the effects of right-to-carry laws on crime requires particular dis-
tributional and structural considerations. First, because of the count nature of crime
data and the low number of expected instances per observation in the most appropriate
data, least-squares methods yield unreliable estimates. Second, use of a single dummy
variable as a measure of the nationwide effect of right-to-carry laws is likely to
introduce geographical and intertemporal aggregation biases into the analysis. In this
paper, we use a generalized Poisson process to examine the geographical and dynamic
effects of right-to-carry laws on reported homicides, rapes, and robberies. We find
that the effects of such laws vary across crime categories, U.S. states, and time and
that such laws appear to have statistically significant deterrent effects on the numbers
of reported murders, rapes, and robberies.

I. Introduction

A theoretical economic model of crime gives an ambiguous answer to
the question of the expected effect of the right to carry concealed handguns
on crime. On the one hand, making it easier to carry a gun lowers the cost
of defending potential victims against attack, which implies that the expected
cost of committing a crime rises for the offender because of the increased
probability of encountering an armed victim or bystander. On the other hand,
the presence of a gun might transform a game or an otherwise nonviolent
dispute into a situation with a deadly ending, and a right to carry guns also
reduces the risk to an offender of preparing to commit crimes that are fa-
cilitated by carrying guns. As in all economic scenarios in which the demand
and supply schedules shift downward, the direction of change in equilibrium
depends on the magnitudes of the changes in both schedules. An empirical

* We wish to thank John Lott for providing us with the data for our analysis.
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analysis is needed to determine the actual directions of the effects of the
right to carry concealed handguns on crime.1

John Lott and David Mustard2 argue that such an empirical analysis will
be unreliable if it is undertaken on the state level, because counties within
a state are too heterogeneous to warrant the aggregation of county-level data
to the state level. Their least-squares county-level analysis suggests that the
adoption of right-to-carry laws has led to statistically significant reductions
in most crime rates. With respect to murder, however, William Bartley and
Mark Cohen3 show that Lott and Mustard’s estimates are a result of their
decision to include the arrest rate, a proxy for police efficiency, as an in-
dependent variable.

The arrest rate is calculated as the ratio of arrests to the number of crimes,
and it is not defined when the number of crimes is zero in a county-year.
This leads Lott and Mustard to exclude all county-years without any murders,
or more than 40 percent of all observations. Once the arrest rate is excluded
and all available observations are used, a least-squares analysis of murder
no longer yields a statistically significant estimate. Rape and robbery are two
other crimes that have zero reported occurrences in a large proportion of
counties each year, but exclusion of the arrest rate and use of all available
observations does not change the statistical significance of the least-squares
estimates for these crimes.

Lott and Mustard,4 as well as Dan Black and Daniel Nagin5 and Bartley
and Cohen,6 use weighted least squares to explain the impact of right-to-
carry laws on county crime rates. These analyses ignore the fact that crime
rates cannot fall below zero. We argue that this practice makes their results
unreliable for crimes with low occurrence rates, and we suggest that a count
analysis is more appropriate. While the standard approach to estimating such
count-data models is to undertake a maximum-likelihood analysis using the
Poisson or the negative binomial distribution, we find that a Markov chain
Monte Carlo analysis of a Poisson-lognormal model is easier to implement
and yields more precise estimates for the crime data.

Black and Nagin7 suggest that a model that tries to capture the effect of
right-to-carry laws on crime with a single dummy variable makes two re-
strictive assumptions that could render its estimates unreliable. First, such a

1 The data we used are the data used by John R. Lott, Jr., & David B. Mustard, Crime,
Deterrence, and Right-to-Carry Concealed Handguns, 26 J. Legal Stud. 1 (1997).

2 Id.
3 William Alan Bartley & Mark A. Cohen, The Effect of Concealed Weapons Laws: An

Extreme Bound Analysis, 36 Econ. Inquiry 258 (1998).
4 Lott & Mustard, supra note 1, at 64.
5 Dan A. Black & Daniel S. Nagin, Do Right-to-Carry Laws Deter Violent Crime? 27 J.

Legal Stud. 209 (1998).
6 Bartley & Cohen, supra note 3.
7 Black & Nagin, supra note 5.
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model assumes the effect to be identical across all states that passed such
laws during the span of time that is analyzed (the geographic aggregation
assumption), and second, such a model assumes the effect to be constant
over time (the intertemporal aggregation assumption).

To relax the geographic aggregation assumption, Black and Nagin deter-
mine state-specific least-squares estimates of the dummy coefficients that
measure the effects of right-to-carry laws on murder, rape, aggravated as-
saults, and robberies. Very few of their estimates are statistically significantly
different from zero, and they conclude that the significance of Lott and
Mustard’s estimates of aggregate average effects is partly due to an aggre-
gation bias. However, to avoid the bias that is caused by excluding obser-
vations on the basis of the dependent variable being zero, they restrict their
analysis to large counties (those with populations of at least 100,000 persons),
which are likely to report positive numbers of murders, rapes, and robberies
in any given year. This practice reduces the number of usable observations
by about 85 percent, to 6,009 for murder and 6,173 for robbery. We argue
that the lack of statistical significance of Black and Nagin’s findings is a
result of their restriction of the data to large counties. We repeat their analysis
of state-specific effects with the Poisson-lognormal model using all available
observations and find state-specific effects of right-to-carry laws to be sta-
tistically significantly different from zero in most cases.

To relax the intertemporal aggregation assumption, Black and Nagin use
five lead and five lag dummies in place of Lott and Mustard’s single dummy
that indicates whether a state has adopted right-to-carry laws. In Black and
Nagin’s least-squares analysis, the coefficients of these dummies and their
standard errors are such that they do not indicate any statistically significant
impact of right-to-carry laws on any of the four crime categories.8 John Lott9

includes two time trends for the pre- and postlaw periods and reports that
for linear as well as for quadratic trends, his least-squares estimates of the
two time trends for murder, rape, and robbery are significantly different from
zero at the 10 percent level. Because neither of these two analyses takes the
count nature of the crime data into account, we argue that these results are
likely to be unreliable.

In this paper, we estimate a more general model that relaxes the geograph-
ical and the intertemporal aggregation assumptions simultaneously, and we
show that there is substantial variation of the effects of right-to-carry laws
across states and across the three crime categories of murder, rape, and
robbery. Our analysis suggests that right-to-carry laws have statistically sig-
nificant deterrent effects on crimes in these categories in at least half of the
10 states that have adopted such laws, but it also indicates that in some states

8 Black & Nagin, supra note 5, at 216, table 2.
9 John Lott, Jr., More Guns, Less Crime: Understanding Crime and Gun-Control Laws 73

n.36 (1998).
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TABLE 1

Distributions of the Numbers of Murders, Rapes, Robberies, Aggravated Assaults,
and Burglaries in Lott and Mustard’s Data Set

Crime 0 1 2 3 4 5 6 7 8 9 10 110 Total

Murder 20,213 8,380 4,892 2,891 2,000 1,375 1,019 807 581 475 372 3,956 46,925
Rape 11,880 6,135 4,237 2,980 2,266 1,690 1,425 1,124 1,003 865 657 11,851 46,111
Robbery 11,563 5,547 3,826 2,680 1,981 1,622 1,260 1,077 947 776 666 14,980 46,925
Assault 2,678 1,848 1,603 1,462 1,215 1,327 1,112 1,009 960 810 824 32,063 46,911
Burglary 258 219 268 248 268 240 245 272 246 275 318 44,068 46,925

the effect of adopting a right-to-carry law may be an increase in crimes in
some categories.

Section II of this paper motivates the use of count-data models and of a
Poisson-lognormal model in particular for analyzing the effects of right-to-
carry laws on the numbers of various crimes. Section III summarizes and
discusses our model specifications and our estimation results, and Section
IV presents our conclusions.

II. The Need for a Count Model to Analyze Infrequent Crimes

Table 1 shows distributions over county-years of the numbers of reported
murders, rapes, robberies, aggravated assaults, and burglaries between 1977
and 1992. For murder, more than 40 percent of all observations are zero,
and more than half are either zero or one. For rape, 25 percent of all ob-
servations are zero, and almost half of the observations are not above two.
Robbery has a similar distribution: about 25 percent of the observations are
zero, and half are not more than three. For aggravated assaults, however,
only 5 percent of all observations are zero and only about 30 percent are
below 11, and for burglary, less than 1 percent of all observations are zero
and only 6 percent are below 11. The very large proportions of zeros in the
cases of murders, rapes, and robberies imply that valid distributions of these
data sets will have substantial mass points at zero for many counties, and
an adequate statistical analysis of these data must take this into account.

One might think that a model that excludes all county-years without any
crime in the category being analyzed circumvents this problem. But this only
prevents the problem from becoming visible. The exclusion would not bias
the results if zero-crime observations were as likely under a right-to-carry
law as without one. However, this is not true if right-to-carry laws make a
difference; the fact that a county does not experience a certain crime during
a year is a piece of information in itself, and eliminating such observations,
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especially in cases where nearly half of the observations fall into this cat-
egory, yields unreliable results.10

Lott and Mustard11 acknowledge this problem and repeat their least-squares
analysis with a Tobit model, which assumes that the distribution of the data
is censored normal (that is, the data are normally distributed for values larger
than zero, and everything that would be to the left of zero is assigned to a
mass point at zero). Their Tobit analysis suffers from the problem that their
computer estimation program (STATA) does not permit the use of dummy
variables for all 3,054 counties in a Tobit analysis. Because their least-squares
results indicate that counties are sufficiently heterogeneous to warrant the
use of such a model as long as sufficient information about possible deter-
minants of the number of crimes is not available on the county level, the
results of their Tobit analysis are unreliable.12

It is more promising to accommodate the fact that county-level data for
important crimes are mostly small nonnegative integers by undertaking sta-
tistical analyses in which the dependent variable is the actual number of
crimes rather than the crime rate.13 The distribution of the dependent variable
is then modeled as a series of mass points at nonnegative integers instead
of a continuous distribution or a continuous distribution plus a single mass
point. The statistical analysis of such models is called count-data analysis.

The standard approach to count-data analysis is to use a maximum-
likelihood estimation technique together with the (discrete) Poisson distri-
bution.14 Although the Poisson distribution describes only data with a variance
equal to its mean (null dispersion), the Poisson regression model has the
advantage that, even if the assumption of null dispersion is incorrect, (quasi)
maximum-likelihood methods yield consistent estimates of the model co-

10 Even if it were true that the zero-crime county-years were otherwise typical, in cases
where about half of the county-years do not show a single occurrence of the crime, the
explanatory power of such a model would be lower than that of a valid analysis that uses
these observations.

11 Lott & Mustard, supra note 1.
12 Even a fixed-effects Tobit model would be misspecified in this case, because the Tobit

model assumes that the data are censored (meaning that, while in principle the dependent
variable can have any value, values below a certain threshold value are recorded as this threshold
value), whereas the crime data can at best be interpreted as truncated (it is not possible to
have a negative number of crimes). Applying the Tobit model to truncated data yields biased
estimates, even when the assumption of normality is valid (see G. S. Maddala, Introduction
to Econometrics 341–42 (2d ed. 1992)).

13 Although it would be possible to attempt to estimate the impact of right-to-carry laws on
crime as an ordered probit or logit model, we do not consider such models to be a viable
alternative to a count analysis in the present case. Ordered probit or logit models are used to
describe latent dependent variables that are theoretically continuous but are coded as ordered
integers for convenience, and we find it difficult to motivate the idea that the number of crimes
is analyzed best as the discrete outcome of an otherwise continuous choice process.

14 See, for example, Rainer Winkelmann & Klaus F. Zimmermann, Recent Developments
in Count Data Modeling: Theory and Application, 9 J. Econ. Surveys 1 (1995); and Adrian
Colin Cameron & Pravin K. Trivedi, Regression Analysis of Count Data (1998).
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efficients as long as the conditional mean is correctly specified. If the true
data-generating process is Poisson, the maximum-likelihood estimates are
efficient.15

To illustrate the importance of the distributional assumptions in this case,
and to demonstrate that the problem of distributional misspecification does
not disappear as the sample becomes very large, we simulated data that are
similar to the data on crime and estimated the coefficients of the generating
process, using different methods.16 Because the expected number of crimes
cannot be negative, we generated our simulated data by a Poisson process17

and used

E(y d x ) p exp (a � bx ) (1)i i i

as the expected value of observation i. In this expression, a is an intercept
term and b is the coefficient of a dummy variable x that takes values of
either one or zero (that is, right-to-carry laws either have or have not been
adopted). We set and and sampled 50,000 observations froma p 0 b p .5
a Poisson distribution, using equation (1) to specify the single parameter (the
mean and the variance) of the Poisson distribution; one-half of the obser-
vations were sampled with and the other half with . This sim-x p 1 x p 0i i

ulated data set had 14,005 zeros and 35,995 values between 1 and 9. We
then used ordinary least squares (OLS), the Tobit model, the probit model,
and the Poisson model to estimate a and b. The results are reported in
Table 2.

Column 2 corresponds to Lott and Mustard’s suggestion of eliminating all
observations with zero crimes and estimating the regression equation

with least squares. For our simulated data, the OLS estimateln y p a � bxi i

of b is 52 standard deviations from the true value. Including the zero ob-
servations by replacing all zeros by .1 (column 3) does not produce adequate
estimates either.18 Estimating the regression equation with they p a � bxi i

Tobit model (column 4) yields a better estimate of b, but the estimate is still
3.5 standard errors from the true value of .5. Because there is no reason to
eliminate all zero observations if the Tobit model is used, we estimated the

15 See Christian Gourieroux, Alain Monfort, & Alain Trognon, Pseudo Maximum Likelihood
Methods: Application to Poisson Models, 52 Econometrica 701, 712 (1984). If the assumption
of null dispersion is incorrect, it is necessary to correct the estimate of the standard errors of
such a misspecified model, for example, by the method developed by Halbert White, Maximum
Likelihood Estimation of Misspecified Models, 50 Econometrica 1 (1982), or by the method
of Peter McCullagh & John A. Nelder, Generalized Linear Models (2d ed. 1989).

16 See Jerry Hausman, Bronwyn H. Hall, & Zvi Griliches, Econometric Models for Count
Data with an Application to the Patents-R&D Relationship, 52 Econometrica 909 (1984), for
another comparison of OLS and Poisson estimates.

17 Although the use of other data-generating processes is possible, the Poisson process is the
standard process used in count-data analyses.

18 In specifications that do not include the arrest rate, Lott & Mustard treat 0 crimes as .1
crimes to avoid taking the logarithm of zero. See supra note 1.
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TABLE 2

Estimation of Simulated Data with Several Estimation Methods

True
Values

(1)

OLS:
Eliminate

Zero Values
(2)

OLS:
Set Zero
Values
to .1
(3)

Tobit:
Eliminate

Zero Values
(4)

Tobit:
Set Zero
Values
to .1
(5)

Probit
(6)

Poisson
(7)

a 0 .3532
(.0039)

1.5856
(.0079)

�.6263
(.0081)

�.9916
(.0116)

.3452
(.0081)

.0069
(.0063)

b .5 .2235
(.0052)

.4552
(.0105)

.6525
(.0115)

.8592
(.0159)

.5250
(.0122)

.4932
(.0079)

N 36,074 50,000 36,074 50,000 50,000 50,000
R2 or log

likelihood .0532 .0610 �36,395 �85,320 �28,636 �72,526

Note.—Estimated standard errors are shown in parentheses. OLS p ordinary least squares.

Tobit model again using all 50,000 observations (column 5); the estimate of
b is 25 standard deviations from the true value. The probit model yields a
better estimate of b, but it is still 2 standard errors from the true value (column
6).19 Not surprisingly, the Poisson model yields the most precise estimate of
b (column 7).20 The exercise provides evidence that the models used by
previous researchers who have undertaken statistical analyses of county-level
murder, rape, and robbery rates are unreliable for determining whether right-
to-carry laws have a statistically significant impact on the numbers of these
crimes.

The assumption that the crime data are Poisson distributed is equivalent
to assuming that the probability of a crime in a small interval of time is
constant in a county during a year and that this probability depends on a
county-specific constant, a year-specific constant, and on several independent
variables whose impacts on the expected number of crimes have the same
functional form across counties. But it is also possible that the probability
of a crime in a small interval of time in a county fluctuates and thus follows

19 The use of the probit model as an alternative specification was suggested to us by Glen
Harrison.

20 In interpreting these results, one needs to keep in mind that the simulated data represent
one single realization of a sample of 50,000 observations from a Poisson distribution and that
different samples from the same distribution will yield different estimates. It is therefore not
so relevant whether the estimation method is able to exactly estimate the true coefficient
(because different samples drawn from the same distribution will yield different estimates of
the coefficients), but rather whether the 95 percent confidence interval includes the true value
and, if that criterion is met, whether the standard error of estimate is small. Ordinary least
squares and the Tobit model both fail with respect to the first criterion. This exercise does not
prove that estimation methods that assume a continuous distribution will generally fail to yield
reliable estimates for count-data problems with many zeros, because we have created only a
single sample of simulated data; a more rigorous analysis would compare the reliability of the
different methods over a variety of samples with different values of a and b.
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a county-specific distribution, which would mean that the parameter of the
Poisson distribution is not deterministic but a random variable itself.

The standard model for such cases is the negative binomial model, which
corresponds to the assumption that the Poisson parameter varies according
to a gamma distribution and implies that the data have a variance that is
larger than their mean (the data are overdispersed).21 However, the asymmetry
of the log of the gamma distribution implies that, if the Poisson parameter
is assumed to be gamma distributed, an increase by a factor of x is less likely
than a decrease by a factor of x. In the context of the current problem, this
means that a county in which, for example, 20 murders per year are expected
on average is more likely to have a year in which 16 murders are expected
than one in which 25 are expected. In the absence of further information
about the variation of the number of murders, this assumption of log asym-
metry is rather arbitrary, and it is more intuitive to assume that an increase
and a decrease by a factor of x are equally likely.22

This can be achieved by assuming that the Poisson parameter follows a
lognormal distribution, which has the log symmetry that the gamma distri-
bution lacks. While a maximum-likelihood analysis of a model with this
distribution would be fairly complex, it is nevertheless possible to estimate
the coefficients of this model with alternative estimation methods. A Markov
chain Monte Carlo method, the Gibbs sampler, lends itself naturally to this
kind of problem. Because the Poisson-lognormal model takes the overdis-
persion of the data explicitly into account, one can expect that it will yield
smaller standard errors than a Poisson model whose standard errors have
been corrected with the standard methods. In a previous analysis of count
data, we found that implementing a Poisson-lognormal model with a Gibbs
sampler yielded estimates of the standard errors of coefficients that were
significantly smaller than those estimated for a Poisson model by a maximum-
likelihood method.23

While least-squares and maximum-likelihood methods assume that the
coefficients in a statistical model are deterministic numbers, Markov chain
Monte Carlo methods are based on the more realistic assumption that these
coefficients are random variables themselves, which means that not only the

21 Although the Poisson estimates of the coefficient means are consistent for overdispersed
data, the correction of the standard deviation does not take the information about dispersion
into account. When there is overdispersion, a model that uses this additional information can
improve on the estimated standard deviation of the misspecified Poisson model.

22 The Poisson and gamma distributions have a natural relationship: if the number of events
follows a Poisson distribution, the time intervals between these events are gamma distributed.
Without further motivation, however, this does not justify the assumption that the Poisson
parameter itself is gamma distributed, and the assumption is usually made for computational
convenience only.

23 Florenz Plassmann & T. Nicolaus Tideman, A Markov Chain Monte Carlo Analysis of
the Effect of Two-Rate Property Taxes on Construction, 47 J. Urb. Econ. 216 (2000).
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data but also the coefficients are samples drawn from specific distributions.24

In the present example, we assume that the numbers of crimes are generated
by a Poisson process whose single parameter follows a lognormal distribution,
which is equivalent to assuming that the coefficients of the exponential re-
gression equation—a and b in equation (1)—follow normal distributions.25

Besides their capacity to model nonstandard distributions, Markov chain
Monte Carlo methods have another advantage for the estimation problem at
hand. Standard computer estimation packages make it difficult, and in some
cases impossible, to estimate nonlinear models with many dummy variables.
Markov chain Monte Carlo methods do not require the maximization of a
likelihood function and are therefore very attractive for the analysis of models
with several thousand explanatory variables and observations.26

III. The Empirical Evidence

A. Selection of Variables

John Lott and David Mustard’s data set contains information for 3,054
counties in the United States for the years 1977–92. Their most widely quoted

24 The assumption that the coefficients are random variables transforms what would otherwise
be a fixed-effects model into a random-effects model.

25 The function that would be required by maximum-likelihood methods is the joint density
function of the Poisson-distributed data and the normally distributed coefficients of the re-
gression equation. Although a closed-form solution for this joint density has not been discovered
yet (and might not even exist), it can be described through the full conditional distributions
of all coefficients in the model (the distributions of individual coefficients, conditional on the
values of all other coefficients and on the data), which can easily be determined in this case.
These full conditional distributions provide sufficient information for the Gibbs sampler to
approximate numerically the unknown joint distribution by creating Markov chains of samples
that are drawn from the full conditional distributions. Because of their Markov properties, these
chains of samples ultimately converge to samples that are drawn from the true marginal (that
is, unconditional) distributions of the coefficients, and these samples can be used to draw
inferences about these distributions, for example, about the means and the variances of the
coefficients. For descriptions and discussion of Markov chain Monte Carlo methods and the
Gibbs sampler, see George Casella & Edward I. George, Explaining the Gibbs Sampler, 46
Am. Stat. 167 (1992); Alan E. Gelfand & Adrian F. M. Smith, Sampling-Based Approaches
to Calculating Marginal Densities, 85 J. Am. Stat. Ass’n 398 (1990); and Walter R. Gilks,
Sylvia Richardson, & David J. Spiegelhalter, Markov Chain Monte Carlo in Practice (1996).

26 One might question the consistency of the estimators of our random-effects count model
because of the incidental parameters problem. Cameron & Trivedi, supra note 14, at 281–82,
shows that it is possible to derive consistent maximum-likelihood estimators for fixed-effects
Poisson models. However, we are not aware of any work that formally addresses the consistency
of Gibbs sampler estimates in nonlinear random-effects models. We undertook another Monte
Carlo experiment for which we sampled 48,000 observations from a model with 3,000 groups
and 16 observations per group. In terms of equation (1), we assumed that each group had a
different intercept a (which we sampled from a normal distribution with mean and variance
equal to one) and an identical . We then estimated all random effects and b using ourb p .5
Gibbs sampler model. We repeated this experiment 100 times; the average value of b was
.49992 with an estimated standard error of .0087. This experiment suggests that the Gibbs
sampler estimates of the right-to-carry dummy in our random-effects model are consistent.
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TABLE 3

Independent Variables Included in Lott and Mustard’s and in This Analysis

Lott and
Mustard’s
Analysis

(1)

This Analysis

Murder
(2)

Rape
(3)

Robbery
(4)

County dummies � � � �
Year dummies � � � �
Dummy variable to indicate whether

right-to-carry law was in effect � � � �
Arrest rate �
County population �
Population density �
ln(Population density) � � �
Real personal income per capita �
ln(Real personal income per capita) � � �
Real per capita unemployment insurance

payments �
Real per capita income maintenance

payments �
Real per capita retirement payments for

persons over 65 years of age �
36 demographic variablesa �
Logs of the 36 demographic variables �
Percentage of county population that is whiteb �
Percentage of county population that is blackb � �

a The demographic variables describe the percentage composition of the county population in terms of
all possible combinations of gender, race (white, black, neither white nor black), and age over 10 (10–19,
20–29, 30–39, 40–49, 50–64, and over 64 years of age).

b The data set contains another category, “neither black nor white,” so no multicollinearity problem arises
if both the percentage black and the percentage white are included in the analysis.

model specification uses the logarithm of the ratio of crimes to population
as the dependent variable, treating 0 crimes as .1 crimes to avoid taking the
logarithm of zero. The independent variables that they use in their analysis
are shown in column 1 of Table 3. One of these independent variables is the
arrest rate. For any crime category in any county-year, the arrest rate is
calculated as the ratio of the number of arrests to the number of crimes in
that category in that county-year and is therefore not defined whenever the
county does not experience any crimes in that category during that year. In
the case of murder, using the arrest rate as an independent variable results
in the elimination of 44 percent of all observations, and the significance of
the right-to-carry dummy in Lott and Mustard’s least-squares analyses of
murder depends on this elimination of all county-years without murders.
However, for rape, the use of the arrest rate leads to the elimination of only
27 percent of the data, and for robbery of only 25 percent of the data. The
effects of eliminating the arrest rate in the analyses of murder, rape, and
robbery are shown in the first three columns of Table 4. Column 1 is a
replication of Lott and Mustard’s most widely quoted estimates as reported



TABLE 4

Aggregate Impacts of Right-to-Carry Laws on Murder, Rape, and Robbery

Normal Model (Estimated with Weighted Least Squares) Poisson-Lognormal Model

Repetition of
Lott and Mustard’s
Specification from

Their Table 3
(1)

Repeat (1)
without the
Arrest Rate

(2)

Repeat (2)
with All

Observations
(3)

Repeat (3)
with Fewer
Independent

Variables
(4)

Repeat (4)
Using Counties
with at Least
One Crime

(5)

Repeat (5) with the
Poisson-Lognormal Model
(Using the Gibbs Sampler)

(6)

Murder:
Right-to-carry dummy �.0729

(�.0156)
�.0675
(.0161)

�.0190
(.0269)

�.0183
(.0276)

�.0198
(.0263)

�.1115
(.0111)

Total number of independent variables 2,975 2,974 3,179 3,129 2,988 2,988
N 26,380 26,380 46,883 46,883 44,614 44,614
Adjusted R2 .8065 .7948 .6276 .6189 .6206

Rape:
Right-to-carry dummy �.0520

(.0122)
�.0571
(.0127)

�.0520
(.0227)

�.0514
(.0224)

�.0516
(.0227)

�.0410
(.00541)

Total number of independent variables 3,094 3,093 3,180 3,175 3,099 3,099
N 33,865 33,865 46,144 46,144 45,450 45,450
Adjusted R2 .8005 .7858 .6616 .6613 .6572

Robbery:
Right-to-carry dummy �.0225

(.0134)
�.0109
(.0145)

.0152
(.0217)

.0141
(.0208)

.0140
(.0210)

.0559
(.0249)

Total number of independent variables 3,062 3,061 3,180 3,141 3,039 3,039
N 34,949 34,949 46,957 46,957 45,952 45,952
Adjusted R2 .9197 .9001 .8320 .8284 .8257

Note.—Least-squares estimates in columns 1–5 are weighted by county population to accommodate heteroskedasticity. Estimated standard errors are shown in parentheses.



782 the journal of law and economics

in their table 4.27 Column 2 shows the effects of omitting the arrest rate if
the same numbers of observations as in column 1 are used, and column 3
shows the estimates of the right-to-carry coefficient if the arrest rate is ex-
cluded and all available observations are used. For rape, the estimate does
not change, remaining significantly less than zero, but for murder and robbery
the estimate increases by more than two of column 1’s standard errors; the
estimate for murder remains negative but becomes insignificant, and the
estimate for robbery remains insignificant and becomes positive. This indi-
cates that in the cases of murder and robbery, the elimination of 56 and 25
percent of all observations that are zero leads to a sample selection bias but
that no such bias is introduced into the analysis of rape if the corresponding
27 percent of all observations are excluded.

In a Gibbs sampler analysis of a Poisson-lognormal distribution, adding
dummy variables does not increase the running time of the algorithm by very
much, but adding nondummy independent variables is very time consuming
for a data set with more than 45,000 observations.28 To obtain estimates of
the impact of right-to-carry laws for the Poisson-lognormal model with the
Gibbs sampler within a reasonable amount of time, we needed to reduce the
number of independent nondummy variables by as much as possible. To
prevent the exclusion of variables that are correlated with the right-to-carry
dummy, we tried to find combinations of independent variables that yielded
weighted least squares estimates of the coefficients of the right-to-carry
dummy that were as close as possible to the estimates of the full model
shown in column 3 of Table 4.29 For the categories of robbery and murder,
we were able to replicate the estimate with only three and four, respectively,
nondummy variables, while the category of rape required the full set of

27 It has been suggested to us that this model will be not yield reliable results because it
does not account for the probability of being arrested and convicted and for the severity of
punishment if convicted. However, the omission of the arrest rate as well as the omission of
the (entirely unknown) conviction rates and severity of punishment will introduce a bias only
if these omitted variables vary in ways that differ among counties and are correlated with the
right-to-carry dummy.

28 This is explained in greater detail in a supplemental paper, which is available from the
authors on request and which shows the distributions from which one needs to sample.

29 The specifications in the first three columns use the log of the number of crimes per
100,000 persons as the dependent variable but do not use log transformations of any of the
independent variables, which implies exponential relationships between the crime rates and
the independent variables. This relationship is unsatisfying for the county population because
if two counties were to be combined into a single county, the expected number of crimes in
the new larger county should be equal to the sum of the expected numbers of crimes in the
two smaller counties. This additivity can be achieved only when population enters the regression
equation multiplicatively with a coefficient of 1, or, equivalently, if the dependent variable
number of crimes is divided by the county population and the county population is not included
again among the independent variables. We therefore excluded the county population from the
subsequent least-squares analyses. To provide for the possibility that population is correlated
with omitted variables, we included the log of population density with an unrestricted coefficient
in the regression equation.
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demographic variables. The sets of independent variables that were included
in the analyses for each crime category are shown in columns 2–4 of Table
3, and our weighted least squares estimates of the coefficient of the right-
to-carry dummy with the reduced sets of independent variables are shown
in column 4 of Table 4; the estimates of the coefficients of the right-to-carry
dummies are virtually unchanged compared with those in column 3.

B. Aggregate and State-Specific Effects of Right-to-Carry Laws
on Murder, Rape, and Robbery

Instead of using the crime rate as the dependent variable, we use the
numbers of murders, rapes, and robberies each as dependent variables and
assume that these numbers were drawn from Poisson-lognormal distributions.
Because the expected numbers of crimes cannot be negative, we express the
expected number of crimes in any given category in county c in year t as

m p POP exp (a � bRTCD � gX � YD � CD ), (2)ct ct ct ct t c

where POPct is population, RTCDct is the right-to-carry dummy, Xct is the
vector of the logarithms of the independent nondummy variables, g is a
vector of the coefficients of these variables, YDt is the coefficient of the tth
year dummy, and CDc is the coefficient of the cth county dummy. The
multiplicative treatment of POPct is equivalent to introducing the log of POPct

in an exponential equation with a coefficient restricted to be 1. This restriction
is plausible, because if two counties were to be combined into a single county,
the expected number of murders in the new larger county should be equal
to the sum of the expected numbers of murders in the two smaller counties;
this can be achieved only when population enters the regression equation
multiplicatively. An estimated coefficient different from 1 would indicate
that population is correlated with omitted variables; to account for this pos-
sibility, we include the log of population density with an unrestricted coef-
ficient in the regression equation.30

The multiplicative form of the regression equation makes it necessary to
eliminate all observations from counties that did not report any crimes in
the examined category for any of the years from 1977 to 1992. The coef-
ficients of the county dummies measure the average expected numbers of
crimes in this category for each county, and introducing the county dummies
in exponential form implies that the best estimate of the coefficients of the
dummies of counties without any reported crimes in a given category would
be minus infinity, resulting in perfect prediction of crime rates for these
counties. Thus, the inclusion of these counties would not contribute anything

30 Because density is defined as POPct/Areact, and Areact is constant for a county, the sub-
stitution of the log of population for the log of density as a variable would affect only the
coefficients of this variable and of the county dummies. It would not affect the coefficients of
the other independent variables or the coefficient of the right-to-carry dummy.
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to the analysis, but the effort to reach minus infinity would prevent conver-
gence. We therefore eliminated all counties without any reported crimes,
which resulted in the elimination of data from 141 counties for the analysis
of murder, 77 counties for the analysis of rape, and 102 counties for the
analysis of robbery. To ensure that the elimination of these data does not
bias our analysis, we repeated our least-squares analysis with the reduced
data sets; column 5 of Table 4 reports the estimates of the coefficients of the
right-to-carry dummies. Comparison between columns 4 and 5 indicates that
the elimination of counties without any crimes in the examined category has
only a very minor impact on the estimates of the coefficients of the right-
to-carry dummies, which means that it is unlikely to introduce a sample
selection bias into the analysis.

The estimation results of our Poisson-lognormal model are reported in
column 6 of Table 4. The coefficient of �.1115 for murder means that we
estimate that right-to-carry laws reduce the number of murders by a factor
of e�.1115, which is a reduction of 1.55 percent. Similarly, our estimates
indicate a decrease of the number of reported rapes by a factor of e�.0410 (a
reduction of 4.02 percent) and an increase in the number of robberies by a
factor of e.0559 (an increase of 5.70 percent). For murder, the estimated effect
is about five times as large as the least-squares estimate in column 5, and
the standard error of estimate has been reduced by one-half.31 For rape, the
estimated effect is about 20 percent smaller than the least-squares estimate
in column 5, and the standard error of estimate has been reduced fourfold.
Like the least-squares estimate, the Poisson-lognormal estimate suggests that
there is a negative average effect of right-to-carry laws on the number of
reported rapes, but because the standard error of estimate is only one-fourth
of the standard error of the least-squares model, the estimate is more precise.
For robbery, the estimated effect is about four times larger than the least-
squares estimate in column 5, and statistically significant, where the least-
squares estimate was not.

We next consider Black and Nagin’s suggestion that a model that estimates
the impact of right-to-carry laws as a nationwide aggregate might be subject
to a geographical aggregation bias and that a disaggregate analysis that es-
timates state-specific effects will yield more reliable results. We extend our

31 For comparison purposes, we estimated equation (2) with maximum likelihood under the
assumption that the number of murders follows a Poisson process and corrected the standard
error of estimate using White’s method (see White, supra note 15; and Winkelmann & Zim-
mermann, supra note 14). The maximum-likelihood estimate of the right-to-carry coefficient
was �.1167 with a standard error of .0110, which suggests that our Gibbs sampler estimates
are reasonable. Because of the difficulty involved with the maximization of a likelihood function
over several thousand dimensions, we assumed for all subsequent analyzes that the Poisson-
lognormal model is a suitable approximation of the true underlying model and estimated the
coefficients only with the Gibbs sampler.
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model to include state-specific coefficients of the right-to-carry dummy and
all nondummy variables, respecifying the regression equation as

m p POP exp (a � b RTCD � g X � YD � CD ). (3)ct ct s s ct s ct t c

For each state, we estimated a different intercept and different values of the
coefficients of the independent variables; an s subscript indicates that the
coefficient is state specific. The estimates of the b coefficients for murder,
rape, and robbery for the 10 states that adopted right-to-carry laws between
1977 and 1992 are reported in Table 5, together with Black and Nagin’s
estimates.32

Our estimates indicate that the effects of right-to-carry laws vary across
states and crime categories. Florida is the only state with significantly negative
estimates of the coefficients of the right-to-carry dummies for all three crime
categories; for all other states, either some of the coefficients are insignifi-
cantly different from zero or the coefficients vary in sign. For murder, the
coefficients of three states (Florida, Georgia, and Oregon) are significantly
negative, and only for Virginia does the analysis suggest that a right-to-carry
law led to a significant increase in the number of murders. For rape, the
coefficients are statistically significantly negative for Florida and Georgia
only and significantly positive for Idaho, Mississippi, and Pennsylvania. For
robbery, all but Georgia’s and Mississippi’s coefficients indicate a statistically
significant decrease in the number of robberies.

The eleventh and twelfth rows in Table 5 show weighted means of the
coefficients of all states, weighting each state by its 1984 population, and
the estimated aggregate effects over all states from column 6 of Table 4. For
rape, the difference between the mean and the aggregate effect is less than
the mean’s standard error, which suggests that there is no aggregation bias
in the estimate of the aggregate effect of right-to-carry laws on these crimes.
For murder, this difference is still less than 2 of the mean’s standard errors,
which also does not permit the conclusion that the estimate of the aggregate
is subject to aggregation bias. The mean for robbery, however, is almost 8.5
standard errors below the estimated aggregate effect, which implies that the
undifferentiated model is misspecified and that, at least for robbery, the
hypothesis that an aggregate effect can be estimated without bias must be
rejected.

Comparison of Black and Nagin’s results with the estimates obtained from
the Poisson-lognormal model shows the advantage of using all available
observations and of using a model that is more suited for the data at hand,
because all of the 30 estimated standard errors of the Poisson-lognormal
model are below those of Black and Nagin’s model. It is interesting to note
similarities between the two models: for 23 of the 30 estimates, the 95 percent
confidence interval of Black and Nagin’s model includes the estimate of the

32 Black & Nagin, supra note 5, at 212, table 1.
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TABLE 5

State-Specific Impacts of Right-to-Carry Laws on Murder, Rape, and Robbery

State

Murder Rape Robbery

Coefficients
Reported by

Black and Nagina

Coefficients
Estimated with the
Poisson-Lognormal

Model

Coefficients
Reported by

Black and Nagina

Coefficients
Estimated with the
Poisson-Lognormal

Model

Coefficients
Reported by

Black and Nagina

Coefficients
Estimated with the
Poisson-Lognormal

Model

Florida �.277*
(.0553)

�.2360*
(.0181)

�.170*
(.0414)

�.1649*
(.0118)

.073
(.0532)

�.0313*
(.00292)

Georgia �.052
(.0743)

�.0796*
(.0223)

�.045
(.0608)

�.1582*
(.0162)

.077
(.0794)

.0094
(.00538)

Idaho �.210
(.2877)

�.0575
(.0485)

�.097
(.0776)

.1033*
(.0372)

�.643*
(.1178)

�.4143*
(.0701)

Maine .072
(.1412)

.0138
(.0437)

.036
(.0621)

�.0207
(.0383)

�.333*
(.0808)

�.2198*
(.0286)

Mississippi .054
(.1421)

.0460
(.0352)

.320*
(.0784)

.1134*
(.0276)

.103
(.1272)

.2474*
(.0169)

Montana �.367
(.2368)

�.0670
(.0543)

�.972*
(.4136)

�.0357
(.0415)

�.139
(.3390)

�.2656*
(.0668)
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Oregon �.059
(.0522)

�.1005*
(.0422)

.035
(.0515)

�.0235
(.245)

�.053
(.0338)

�.4752*
(.0121)

Pennsylvania �.089
(.0881)

�.0455
(.0277)

.044
(.0286)

.1424*
(.0184)

�.035
(.0603)

�.1372*
(.00642)

Virginia .039
(.0830)

.0802*
(.0228)

�.076
(.0418)

�.0255
(.0187)

�.121
(.0634)

�.0475*
(.00648)

West Virginia .718*
(.1697)

.0519
(.0380)

�.285*
(.1029)

�.0109
(.0314)

.094
(.1106)

�.0883*
(.0195)

Mean of all 10 estimates �.0677
(.0292)

�.0208
(.0214)

�.0869
(.0168)

Aggregate effect �.111
(.0111)

�.0410
(.00541)

.0559
(.00249)

Number of observations 6,009 44,614 6,036 45,450 6,109 45,952

Note.—The aggregate effects are the effects reported in column 6 of Table 4. Estimated standard errors are shown in parentheses.
a Dan A. Black & Daniel S. Nagin, Do Right-to-Carry Laws Deter Violent Crime? 27 J. Legal Stud. 209 (1998).
* Significant at the 95% level.
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Poisson-lognormal model. This indicates that while the exclusion of small
counties (those with a population below 100,000 persons—more than 70
percent of the observations, mostly at the left end of the distribution of crimes)
makes it possible to avoid some of the difficulties posed by the integer nature
of the data, this greatly reduces the precision of the estimates.

C. Relaxing the Intertemporal Aggregation Assumption

The two models in the previous subsection used a single dummy variable
to describe the nationwide and the state-specific effects of right-to-carry laws.
This dummy variable measures the difference between the average expected
numbers of crimes before and after a right-to-carry law had been imple-
mented. However, the use of averages might mask the presence of trends or
cycles that could provide a better insight into the effects of the laws. Lott
and Mustard33 report that use of pre- and postlaw trends indicates a deterrent
effect of right-to-carry laws on most violent crimes, but they do not report
the results of their regressions; Lott34 reports estimates of trend dummies for
violent crimes that suggest that the postlaw trends are significantly more
negative that the prelaw trends.35

The use of a single coefficient to describe a trend requires the guess of a
specific functional form of the trend (usually either linear or quadratic), but
the actual trend might be less systematic. A more general approach is there-
fore to use several dummies for the years around the implementation of the
law. Black and Nagin36 introduced lead and lag dummies for the 5 years
before and the 5 years after a state had implemented a right-to-carry law.
Again, they restricted their analyses to counties with populations of more
than 100,000 persons to reduce the sample selection bias that is caused by
using the arrest rate as an independent variable, thereby eliminating all
county-years with zero crimes in the category examined, and they used first
differences of all variables to eliminate the need for fixed-effects county
dummies. Their analyses did not show a consistent pattern that would indicate
deterrent effects of right-to-carry laws.

Comparison between Black and Nagin’s and our estimates in Table 5
indicates that eliminating small counties reduces the possibility of finding
such effects, because reduction of the number of observations increases the
estimates of the standard errors. We therefore used the Poisson-lognormal

33 Lott & Mustard, supra note 1.
34 John R. Lott, Jr., The Concealed-Handgun Debate, 27 J. Legal Stud. 221, 239–41 (1998).
35 Results of a similar analysis are reported in Lott, supra note 9, at 72.
36 Black & Nagin, supra note 5.
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model and all possible observations to estimate the coefficients of the lead
and lag dummies.37

The results of our analyses for murder, rape, and robbery, together with
Black and Nagin’s estimates, are reported in Table 6. For murder and rape,
the preadoption trends are similar: for both crimes, the lead dummies are not
significantly different from each other, although the estimates suggest that
the number of murders seems to have peaked 3 years before adoption of
right-to-carry laws, while the trend for rapes was slightly increasing. The
estimates for robbery, on the other hand, indicate the presence of a trend
that had peaked 2 years before the adoption of the laws.38

For none of the categories is the dummy for the year 0 (the year during
which right-to-carry laws were adopted) significantly different from that of
the preceding year. That is not surprising if the laws were adopted in the
middle of the year, so that any effect of such laws would not have affected
crime rates for the whole year. There is often a delay of 2–3 months between
the adoption of the law and the time when the first permits are issued, which
might also explain why the year 0 coefficient is not statistically significant.39

In addition, the estimates suggest that it took about 1 year until criminals
had learned that committing a crime had become more costly, because for
the first year after implementation of the law only the estimate for rape is
(barely) significantly below that of the preceding year. However, for all three
crime categories the levels in years 2 and 3 after adoption of a right-to-carry
law are significantly below the levels in the years before the adoption of the
law, which suggests that there is generally a deterrent effect and that it takes
about 1 year for this effect to emerge.40

37 If a dependent variable is normally distributed, a model that is expressed in first differences
is normal as well, because the difference of two normally distributed random variables is also
normally distributed. The difference between two Poisson-lognormally distributed variables,
however, is not Poisson-lognormally distributed but follows an unbounded discrete distribution
whose closed-form solution is not known and which is difficult to approximate. Instead of
expressing the regression equation in first differences, we therefore continued to use the number
of crimes in a category as the dependent variables, and we undertook the analysis with county
dummies, yearly dummies, and the independent nondummy variables that are described in
Table 3.

38 Note that it is irrelevant whether the estimates are significantly different from zero; what
is relevant is whether the dummies for years after the adoption of right-to-carry laws are
significantly different from the dummies before the adoption of such laws.

39 John Lott, e-mail correspondence with the authors, November 19, 1999.
40 Among the 10 states that adopted right-to-carry laws between 1977 and 1992, Maine was

the only state that adopted such a law before 1987, which implies that the estimates of the
coefficients of the lags for years 4 and 5 are obtained from data of a single state only. The
standard errors of estimate of these coefficients are therefore much larger than the standard
errors for the other years, and it is difficult to interpret these estimates together with the other
estimates.
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TABLE 6

Intertemporal Impacts of Right-to-Carry Laws on Murder, Rape, and Robbery

Murder Rape Robbery

Least-Squares
Estimates by

Black and Nagina
Poisson-Lognormal

Estimatesb

Least-Squares
Estimates by

Black and Nagina
Poisson-Lognormal

Estimatesb

Least-Squares
Estimates by

Black and Nagina
Poisson-Lognormal

Estimatesb

Years before the adoption of
right-to-carry laws:

5 .0313
(.0192)

�.0260
(.00939)

.1036
(.00422)

4 �.015
(.0454)

.0393
(.0193)

�.057*
(.0268)

�.0388
(.00929)

.023
(.0324)

.1276
(.00397)

3 �.039
(.0609)

.0474
(.0189)

�.073
(.0394)

�.0499
(.00923)

�.002
(.0333)

.1708
(.00380)

2 .018
(.0667)

.0270
(.0189)

�.067
(.0364)

�.0455
(.00912)

.062
(.0437)

.2147
(.00375)

1 �.094
(.0718)

.0160
(.0226)

�.095*
(.0411)

�.0174
(.0110)

.039
(.0429)

.1369
(.00510)

Years after the adoption of
right-to-carry laws:
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0 �.022
(.0759)

.0068
(.0185)

�.053
(.0351)

�.0552
(.00904)

.096*
(.0374)

.1880
(.00373)

1 �.089
(.0659)

�.0367
(.0181)

�.053
(.0331)

�.0979
(.00899)

.048
(.0361)

.1558
(.00354)

2 .076
(.0905)

�.1452
(.0188)

�.038
(.0400)

�.1088
(.00910)

�.032
(.0457)

.0988
(.00355)

3 �.088
(.0740)

�.0976
(.0217)

�.087*
(.0412)

�.1003
(.0103)

.029
(.0433)

.0569
(.00405)

4 .080
(.0792)

.0668
(.0436)

�.066
(.0367)

�.0287
(.0229)

.040
(.0408)

.1437
(.0113)

5 �.133
(.0801)

�.4125
(.1332)

�.123*
(.0447)

�.0216
(.0418)

�.018
(.0462)

�.2727
(.0378)

N 5,449 44,614 5,587 45,450 5,725 45,952

Note.—Estimated standard errors are shown in parentheses.
a Variables measured as differences. Dan A. Black & Daniel S. Nagin, Do Right-to-Carry Laws Deter Violent Crime? 27 J. Legal Stud. 209 (1998).
b Variable measured as levels.
* Significant at the 95% level, two-tailed tests, as reported by Black and Nagin.
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D. Combination of the Intertemporal and the Geographical Models

The results of the two preceding subsections indicate that there is enough
geographical as well as intertemporal variation in the effects of the right to
carry concealed handguns that an analysis requires a model that introduces
both forms of variation simultaneously. We attempted to estimate state-spe-
cific lead and lag dummies but discovered that there are not enough data to
estimate 11 dummies per state with adequate precision. We therefore decided
to estimate a single pattern of lead and lag dummies and to include two
additional dummies per state for nine of the 10 states to describe state-specific
exponentially additive factors for the lead and lag dummies, using the fol-
lowing regression equation:

�1

m p POP exp a � (b � d )RTCD�ct ct s t 1s ctt[
rp�5

3

� (b � d )RTCD � g X � YD � CD , (4)� t 2s ctt s ct t c]
rp0

where d1s and d2s are the two dummy variables for state s.41

The results of our analyses of murders, rapes, and robberies are reported
in Tables 7, 8, and 9, respectively. For each state, the tables show estimates
of the coefficients of the lead and lag dummies as well as the estimates of
the coefficients of the two dummy variables for every state except Florida.
For Florida, the reported leads and lags are the original estimates (and no
dummies for the pre- and postlaw periods were estimated); for every other
state, the reported leads and lags are calculated as the sum of the estimate
for Florida and the dummy for that state for the respective period. The first
two columns in each table summarize the information by showing the av-
erages of the 5 years before right-to-carry laws were adopted and the averages
for the first 4 years during which right-to-carry laws were effective.

Florida, Oregon, and Montana are the only states with statistically signif-
icant decreases in the averages of the coefficients for all three crime cate-
gories; Georgia also had significant decreases in murders and robberies, but
the decrease in the number of rapes is not statistically significant. For Idaho,
the estimates indicate statistically significant decreases of murders and rob-
beries, but the estimated effect on rapes is statistically significantly positive.
For West Virginia, the change in rapes is significantly negative; for Missis-
sippi, the changes in rapes and robberies are positive and statistically sig-
nificant; and for Virginia, the change in robberies is significantly positive.

41 We included only three lags because Maine is the only state for which data for more than
three lags are available.



TABLE 7

Intertemporal and Geographical Impacts of Right-to-Carry Laws on Murder

Average
before

Adoption

Average
after

Adoption

Dummy
before

Adoption

Dummy
after

Adoption

Years before Adoption of
Right-to-Carry Laws

Years after Adoption of
Right-to-Carry Laws

5 4 3 2 1 0 1 2 3

Floridaa .1212
(.0250)

�.1625
(.0232)

. . . . . . .1119
(.0244)

.1170
(.0239)

.1249
(.0232)

.1066
(.0233)

.1458
(.0297)

�.0764
(.0232)

�.1222
(.0232)

�.2381
(.0230)

�.2134
(.0250)

Georgiaa �.0021
(.0380)

�.1296
(.0371)

�.1233
(.0286)

.0329
(.0309)

�.0114
(.0377)

�.0063
(.0373)

.0016
(.0369)

�.0167
(.0369)

.0225
(.0413)

�.0435
(.0369)

�.0892
(.0369)

�.2052
(.0367)

�.1804
(.0380)

Idahoa �.1800
(.1056)

�.4241
(.1053)

�.3012
(.1026)

�.2616
(.1257)

�.1894
(.1055)

�.1842
(.1054)

�.1764
(.1052)

�.1946
(.1052)

�.1554
(.1068)

�.3381
(.1052)

�.3838
(.1052)

�.4997
(.1052)

�.4750
(.1056)

Maine �.0412
(.1421)

.1081
(.1419)

�.1625
(.1399)

.2706
(.1378)

�.0506
(.1420)

�.0454
(.1419)

�.0376
(.1418)

�.0559
(.1418)

�.0167
(.1430)

.1942
(.1418)

.1484
(.1418)

.0325
(.1418)

.0572
(.1421)

Mississippi �.1542
(.0558)

�.1159
(.0552)

�.2754
(.0499)

.0466
(.0547)

�.1636
(.0556)

�.1584
(.0553)

�.1506
(.0551)

�.1688
(.0551)

�.1296
(.0581)

�.0298
(.0551)

�.0756
(.0551)

�.1915
(.0550)

�.1667
(.0558)

Montanaa �.1722
(.1171)

�.8058
(.1168)

�.2934
(.1144)

�.6432
(.1894)

�.1816
(.1169)

�.1764
(.1168)

�.1686
(.1167)

�.1869
(.1167)

�.1476
(.1182)

�.7197
(.1167)

�.7654
(.1167)

�.8814
(.1167)

�.8566
(.1171)

Oregona .2755
(.0574)

�.0832
(.0568)

.1543
(.0517)

.0793
(.0630)

.2662
(.0572)

.2713
(.0569)

.2792
(.0567)

.2609
(.0567)

.3001
(.0596)

.0029
(.0566)

�.0429
(.0567)

�.1588
(.0566)

�.1340
(.0574)

Pennsylvania .0033
(.0388)

.0703
(.0379)

�.1180
(.0297)

.2328
(.0295)

�.0061
(.0384)

�.0009
(.0381)

.0069
(.0377)

�.0114
(.0377)

.0279
(.0420)

.1564
(.0377)

.1106
(.0377)

�.0053
(.0375)

.0194
(.0388)

Virginia .0240
(.0435)

.0854
(.0427)

�.0973
(.0356)

.2479
(.0343)

.0146
(.0432)

.0197
(.0429)

.0276
(.0425)

.0093
(.0425)

.0485
(.0463)

.1715
(.0425)

.1258
(.0425)

.0098
(.0424)

.0346
(.0435)

West Virginia �.0065
(.0663)

.1201
(.0657)

�.1278
(.0614)

.2827
(.0603)

�.0159
(.0660)

�.0107
(.0658)

�.0029
(.0656)

�.0212
(.0656)

.0180
(.0682)

.2062
(.0656)

.1605
(.0656)

.0445
(.0655)

.0693
(.0663)

Note.—Estimated standard errors are shown in parentheses.
a Significant decrease between the two averages (statistically significant at the 95% confidence level).
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TABLE 8

Intertemporal and Geographical Impacts of Right-to-Carry Laws on Rape

Average
before

Adoption

Average
after

Adoption

Dummy
before

Adoption

Dummy
after

Adoption

Years before Adoption of
Right-to-Carry Laws

Years after Adoption of
Right-to-Carry Laws

5 4 3 2 1 0 1 2 3

Floridaa �.0617
(.0121)

�.1613
(.0115)

. . . . . . �.0545
(.0118)

�.0659
(.0115)

�.0760
(.0113)

�.0711
(.0115)

�.0409
(.0142)

�.1183
(.0117)

�.1593
(.0116)

�.1728
(.0114)

�.1519
(.0121)

Georgia .0347
(.0199)

�.0173
(.0197)

.0963
(.0159)

.1333
(.0178)

.0418
(.0198)

.0305
(.0196)

.0204
(.0195)

.0253
(.0196)

.0555
(.0213)

.0150
(.0197)

�.0260
(.0197)

�.0395
(.0195)

�.0186
(.0200)

Idahob �.2225
(.0458)

�.0468
(.0457)

�.1609
(.0442)

.1038
(.0439)

�.2154
(.0457)

�.2268
(.0457)

�.2369
(.0456)

�.2320
(.0457)

�.2017
(.0464)

�.0145
(.0457)

�.0555
(.0457)

�.0690
(.0456)

�.0481
(.0458)

Maine �.0489
(.0647)

�.1108
(.0646)

.0128
(.0636)

.0398
(.0618)

�.0417
(.0646)

�.0531
(.0646)

�.0632
(.0645)

�.0583
(.0646)

�.0281
(.0651)

�.0785
(.0646)

�.1195
(.0646)

�.1330
(.0646)

�.1121
(.0647)

Mississippib �.1111
(.0320)

.0630
(.0318)

�.0495
(.0296)

.2136
(.0315)

�.1039
(.0319)

�.1153
(.0318)

�.1254
(.0317)

�.1205
(.0317)

�.0903
(.0328)

.0953
(.0318)

.0543
(.0318)

.0408
(.0317)

.0617
(.0320)

Montanaa �.3064
(.0509)

�.5223
(.0508)

�.2447
(.0495)

�.3717
(.0679)

�.2992
(.0509)

�.3106
(.0508)

�.3207
(.0508)

�.3158
(.0508)

�.2856
(.0515)

�.4900
(.0508)

�.5310
(.0508)

�.5445
(.0508)

�.5236
(.0509)

Oregon .0040
(.0228)

�.0647
(.0226)

.0657
(.0193)

.0858
(.0215)

.0112
(.0226)

�.0002
(.0225)

�.0103
(.0224)

�.0054
(.0225)

.0248
(.0239)

�.0325
(.0226)

�.0735
(.0225)

�.0869
(.0224)

�.0660
(.0228)

Pennsylvania .0134
(.0189)

�.0360
(.0186)

.0750
(.0145)

.1145
(.0149)

.0205
(.0187)

.0091
(.0185)

�.0010
(.0183)

.0040
(.0185)

.0342
(.0202)

�.0038
(.0186)

�.0447
(.0186)

�.0582
(.0184)

�.0373
(.0189)

Virginia �.0800
(.0220)

�.0601
(.0218)

�.0184
(.0184)

.0905
(.0192)

�.0728
(.0218)

�.0842
(.0217)

�.0943
(.0215)

�.0894
(.0217)

�.0592
(.0232)

�.0279
(.0217)

�.0688
(.0217)

�.0823
(.0216)

�.0614
(.0220)

West Virginiaa �.0350
(.0365)

�.2152
(.0363)

.0266
(.0344)

�.0646
(.0353)

�.0279
(.0364)

�.0393
(.0363)

�.0494
(.0362)

�.0445
(.0363)

�.0142
(.0372)

�.1830
(.0363)

�.2239
(.0363)

�.2374
(.0363)

�.2165
(.0365)

Note.—Estimated standard errors are shown in parentheses.
a Significant decrease between the two averages (statistically significant at the 95% confidence level).
b Significant increase between the two averages (statistically significant at the 95% confidence level).
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TABLE 9

Intertemporal and Geographical Impacts of Right-to-Carry Laws on Robbery

Average
before

Adoption

Average
after

Adoption

Dummy
before

Adoption

Dummy
after

Adoption

Years before Adoption of
Right-to-Carry Laws

Years after Adoption of
Right-to-Carry Laws

5 4 3 2 1 0 1 2 3

Floridaa .2616
(.0051)

.2335
(.0043)

. . . . . . .2085
(.0050)

.2318
(.0047)

.2763
(.0045)

.3197
(.0045)

.2715
(.0063)

.3027
(.0044)

.2675
(.0043)

.2077
(.0042)

.1562
(.0045)

Georgiaa .3083
(.0083)

.2553
(.0079)

.0468
(.0066)

.0218
(.0068)

.2553
(.0083)

.2786
(.0081)

.3231
(.0080)

.3665
(.0080)

.3183
(.0091)

.3245
(.0080)

.2893
(.0079)

.2296
(.0079)

.1780
(.0080)

Idahoa �.5158
(.0370)

�.8319
(.0369)

�.7774
(.0366)

�1.0654
(.0450)

�.5689
(.0369)

�.5455
(.0369)

�.5011
(.0369)

�.4577
(.0369)

�.5059
(.0371)

�.7627
(.0369)

�.7979
(.0369)

�.8577
(.0369)

�.9092
(.0369)

Maine �.2400
(.0384)

�.3607
(.0384)

�.5016
(.0381)

�.5942
(.0390)

�.2930
(.0384)

�.2697
(.0384)

�.2252
(.0384)

�.1819
(.0384)

�.2301
(.0386)

�.2915
(.0384)

�.3267
(.0383)

�.3864
(.0383)

�.4380
(.0384)

Mississippib �.1499
(.0188)

.1433
(.0187)

�.4115
(.0181)

�.0902
(.0183)

�.2030
(.0188)

�.1797
(.0187)

�.1352
(.0187)

�.0918
(.0187)

�.1400
(.0192)

.2125
(.0187)

.1773
(.0186)

.1175
(.0186)

.0660
(.0187)

Montanaa �.5237
(.0434)

�.7024
(.0433)

�.7852
(.0431)

�.9359
(.0612)

�.5767
(.0434)

�.5534
(.0434)

�.5089
(.0433)

�.4655
(.0433)

�.5137
(.0436)

�.6333
(.0433)

�.6685
(.0433)

�.7282
(.0433)

�.7798
(.0433)

Oregona .2228
(.0106)

�.2156
(.0103)

�.0388
(.0093)

�.4491
(.0110)

.1698
(.0106)

.1931
(.0104)

.2375
(.0103)

.2809
(.0104)

.2327
(.0112)

�.1464
(.0103)

�.1816
(.0103)

�.2413
(.0102)

�.2929
(.0103)

Pennsylvania �.0166
(.0075)

�.0072
(.0071)

�.2782
(.0056)

�.2407
(.0055)

�.0697
(.0075)

�.0464
(.0073)

�.0019
(.0072)

.0415
(.0072)

�.0067
(.0084)

.0620
(.0071)

.0267
(.0070)

�.0330
(.0070)

�.0845
(.0072)

Virginiac �.0298
(.0099)

.0034
(.0096)

�.2914
(.0085)

�.2301
(.0085)

�.0829
(.0099)

�.0596
(.0098)

�.0151
(.0097)

.0283
(.0097)

�.0199
(.0106)

.0726
(.0096)

.0374
(.0096)

�.0224
(.0095)

�.0739
(.0097)

West Virginia �.1290
(.0220)

�.1571
(.0219)

�.3906
(.0214)

�.3906
(.0222)

�.1820
(.0220)

�.1587
(.0220)

�.1143
(.0219)

�.0709
(.0219)

�.1191
(.0224)

�.0879
(.0219)

�.1232
(.0219)

�.1829
(.0219)

�.2344
(.0219)

Note.—Estimated standard errors are shown in parentheses.
a Significant decrease between the two averages (statistically significant at the 95% confidence level).
b Significant increase between the two averages (statistically significant at the 95% confidence level).
c Significant increase between the two averages (statistically significant at the 90% confidence level).
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Maine and Pennsylvania are the only states for which none of the estimates
is statistically significantly different from zero.

Comparison of the results of this combined analysis with the earlier results
provides some interesting insights. The estimates in Table 7 for Florida, Idaho,
Mississippi, and Montana have identical signs and the same degrees of sta-
tistical significance as the estimates in the combined analysis. For Maine,
Oregon, and West Virginia, the estimated effects have identical signs in both
analyses, although the degrees of significance vary. For Georgia and Virginia,
the two analyses suggest different effects for robbery. For Pennsylvania, the
analysis reported in Table 5 yielded significant effects for rape and robbery,
while in the combined analysis, none of the effects is significantly different
from zero, and the signs of the effects on all three crimes are reversed. This
indicates that a model that describes only geographical variation will work
quite well on average for these data but that its estimates will still not be
completely reliable. Unlike the intertemporal analysis in Table 6, the com-
bined analysis indicates that the numbers of murders and rapes had already
changed significantly in the year during which a right-to-carry law was
adopted and that the number of robberies changed in the first year after
adoption. The combined analysis also shows that the deterrent effect of right-
to-carry laws on murder and rape does not peak in the second year after
adoption but that the effect increases even in the third year. This indicates
that an intertemporal analysis that ignores geographical variation is subject
to the same geographical aggregation bias as an analysis that estimates the
effect of right-to-carry laws with a single dummy variable.

IV. Summary and Conclusion

In this paper, we use a Poisson-lognormal model to analyze intertemporal
and geographical variations in the effects of right-to-carry laws on murders,
rapes, and robberies. For each of these crime categories, our estimates suggest
the existence of statistically significant deterrent effects of right-to-carry laws
for the majority of the 10 states that have adopted such laws between 1977
and 1992, but we also find that some of these states experienced statistically
significant increases in the numbers of certain crimes.

On the one hand, this indicates that right-to-carry laws do not always have
the deterrent effects on crime that are envisaged by legislators and that the
adoption of such laws is not without risk. On the other hand, our analysis
suggests that it would be imprudent to make it generally more difficult for
law-abiding citizens to carry concealed handguns as long as there exist large
numbers of weapons that can and will be used by criminals to commit crimes,
because right-to-carry laws do help on average to reduce the number of these
crimes.

While this ambiguous result is somewhat discouraging, because it indicates
that a right to carry concealed handguns is unlikely to be the ultimate weapon
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against crime, it is not very surprising. Whenever the theoretically possible
and in-practice plausible effects of public policy are ambiguous, it can be
expected that the effects of such a policy will differ across localities that are
different from each other. It is rather remarkable that these effects differ so
clearly and that our analysis produced so many statistically significant and
consistent results.

After having found that right-to-carry laws do have measurable effects on
crimes, the next step is to examine why states differ in their responses to
these laws. What makes Mississippi and Virginia, two states with general
increases in crime rates, so different from the other states? In what respect
is Idaho, a state with significant decreases in murders and robberies but
significant increases in the number of rapes, different from Florida, Montana,
and Oregon, which experienced significant decreases in all three crime cat-
egories? Answers to these questions will enhance our understanding of why
right-to-carry laws lead to fewer crimes in many but not all states and will
make it easier to decide when the adoption of such laws should be
recommended.
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